
Computer Vision Based Smart Parking Lot System
Mark Stiller, Sairam Tangirala, and Tae Song Lee

Applied Physics Laboratory, School of Science and Technology,

Georgia Gwinnett College, Lawrenceville, GA 30043

Introduction

In the institutions and venues having multiple parking decks, it can sometimes be

difficult to locate empty parking spots. Examples include academic institutions,

commercial parking decks, etc. Research on the prevalence of smart parking lots

indicates a recent focus on the monitoring of electric charging stations within the

traditional parking lots, rather than a real time monitoring of all the parking spots

inventory. Our work focuses on designing, developing and prototyping an

implementation of a hybrid computer-vision and client-facing app system to

eliminate user’s guesswork and to improve efficiency of the parking lot system. In

our approach, the real-time video-feed of a parking lot’s entrance/exit is

processed using a portable, independent, computing system. The processed

information is transmitted to a remote server via telemetry using LoRa (Long

Range) protocol. LoRa is a low-power wide-area network protocol developed by

Semtech Corporation that works independently without any other network (like

Wi-Fi, WAN, LAN) dependencies. The server then processes telemetry-data and

updates the parking spots inventory in real-time. The client-facing app then uses

the real-time inventory data to provide current parking lot status to the user.

Additional features like notifications about full, closed, and busy lots also are also

planned to be implemented.

Abstract

• Little research has been published on parking lot systems in recent years. The

general trend among existing research is a constant monitoring of the entire

parking area.

• One implementation involved the installation of sensor nodes embedded in

parking spaces and connected terminals to transmit data over a LAN. The

ideal setup for this system is one terminal for every two parking spaces.

Another implementation chose to monitor the entire parking lot with a single

overhead camera mounted parallel to the orientation of parking spaces, using

a lightweight edge-detection algorithm to evaluate spaces.

• Our system operates as individual compact computing systems mounted at the

entrances/exits of a parking lot. Each unit tracks the number of vehicles that

enter and leave the lot, with object detection being run every 30 frames of

incoming footage and processed on a 3x3 depthwise image convolution

matrix. The processed telemetry data is then sent to a remote server using the

LoRa protocol. The server processes data from the individual devices and

updates a parking space inventory for the client-facing app, providing real-time

data to users.

Technologies Used
The system resides on a Jetson Nano Dev Board (Fig. 1), with an external

camera (Fig. 2) used to gather video input. OpenCV and other python libraries

such as imutils are used to parse incoming video. A MobileNetSSD performs

object detection using the previously mentioned 3x3 depthwise image convolution

matrix, and detected objects are checked against a trained TensorFlow model for

object recognition. Telemetry transmission uses the LoRa protocol, which allows

individual systems to operate outside the bounds of a LAN and at a lower power

consumption than relying on Wi-Fi.

Fig. 1. Jetson Nano
Dev Board

Fig. 2. Camera Fig. 3. LoRa chip

Fig. 4. Jetson Nano Dev Board
Specifications

Our System
• Footage used in testing was taken from an interstate overpass on a smartphone at

1080p, 60FPS. Footage listed as “cropped” in later figures was cropped to half the

original width.

• Displayed in Figure 7 (below) is an example frame of the footage being processed.

• An overlay at the bottom left of the image displays whether the system is

waiting for objects to track, tracking detected objects, or (every 30 frames)

running object detection.

• Objects detected are given a sequential ID that follows them until object

detection is run again and they are determined to have left the frame.

Fig. 5. OpenCV and
TensorFlow logos

• With only one compact computer

system per entrance/exit to a parking

lot, we are able to achieve high

accuracy than an overhead camera at

a lower cost than a system of

embedded sensors and relay

terminals.

• LoRa allows the system to cover larger

parking lots with no additional setup

required (beyond a power source), as

well as lots where an institution’s LAN

does not reach.

• The modular nature of the system and

the use of LoRa also makes the

system extremely scalable, and it can

be used to divide parking lots into

sections for more accurate monitoring.

• As the system operates on entrances

and exits, it is also ideal for parking

garages where overhead monitoring is

unfeasible.

Methods
All tests were run on both the development environment (a consumer laptop) and

the deployment environment (a Jetson Nano Dev Board) in order to evaluate the

performance of the system on the deployment environment.

• 3 video recordings of 60+ seconds in length were used as the base input for

reproducibility, with a copy of each being converted to monochrome for testing

purposes.

• An additional copy of color and monochrome footage was made and slowed to

25% of the original speed in an attempt to more accurately simulate the speed

of vehicles entering and exiting a campus parking area.

• Each video source was processed in increments of 10 seconds (10, 20, 30, 40,

50, and 60 seconds in length), with each increment run 3 times and the

average taken to be used for data analysis.

• The process was repeated with a “crop” option active in the script, which only

processed the center half of the video sources.

In total, there are 4 major resulting datasets:

• Color footage run on the development environment

• Monochrome footage run on the development environment

• Color footage run on the deployment environment

• Monochrome footage run on the deployment environment

Each of these datasets is further divided into 4 plots:

• Full speed footage, without cropping

• Full speed footage, with cropping

• Slowed footage, without cropping

• Slowed footage, with cropping

Results

y = 2.2495x

y = 2.1641x

y = 4.3754x

y = 4.966x

0

50

100

150

200

250

300

350

0 50 100 150

av
g

p
ro

ce
ss

 t
im

e
(s

)

vehicles counted

(Laptop) Clip A processed in color (1080p)

full speed,
cropped

full speed, no
crop

25% speed,
cropped

25% speed, no
crop

Linear (full
speed,
cropped)

y = 12.456x

y = 10.686x

y = 21.721x

y = 24.866x

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150

av
g

p
ro

ce
ss

 t
im

e
(s

)

vehicles counted

(Nano) Clip A processed in color (1080p)

full speed,
cropped

full speed, no
crop

25% speed,
cropped

25% speed, no
crop

Linear (full
speed,
cropped)

y = 2.3638x

y = 1.9011x

y = 4.4085x

y = 3.6404x

0

20

40

60

80

100

120

140

160

180

0 50 100

av
g

p
ro

ce
ss

 t
im

e
(s

)

vehicles counted

(Laptop) Clip A processed in monochrome
(720p)

full speed,
cropped

full speed, no
crop

25% speed,
cropped

25% speed, no
crop

Linear (full
speed,
cropped)

y = 10.114x

y = 9.686x

y = 17.99x

y = 17.961x

0

100

200

300

400

500

600

700

800

900

0 50 100

av
g

p
ro

ce
ss

 t
im

e
(s

)

vehicles counted

(Nano) Clip A processed in monochrome
(720p)

full speed,
cropped

full speed, no
crop

25% speed,
cropped

25% speed, no
crop

Linear (full
speed,
cropped)

1. The results from both the development environment (Plot 1) and deployment

environment (Plot 2) show that processing time is directly impacted by the number

of vehicles tracked as well as the dimensions of the video source used.

2. The speed of footage used had a minor effect on performance, though slowed

footage actually slightly increased the processing time compared to the full speed

footage (this is likely due to vehicles spending more time in frame).

3. The Jetson Nano (Plot 2) performed approximately 5 times slower than the laptop

(Plot 1) (a maximum of approx. 1500 seconds compared to approx. 300), however

the results were proportionately very similar to those of the laptop.

4. Monochrome footage showed similar results, with a major improvement of halving

the processing time taken, with approx. 150 seconds maximum for the laptop (Plot

3) and approx. 750 seconds maximum for the Jetson Nano (Plot 4).

5. The Jetson Nano saw the greater improvement using monochrome footage (Plot 4)

over color footage (Plot 2) but is still significantly behind the laptop.

6. The number of detected vehicles is slightly lower overall using monochrome

footage, but objects lost were those vehicles in the opposite set of interstate lanes

(the lanes not intended to be monitored).

Considerations
1. Results shown on this poster only include the first of the video clips taken.

However, the other two clips showed very similar results to the first and they were

ultimately excluded from the poster for the sake of space.

2. Due to a lack of campus traffic to test the system on (due to the current world

situation), the results give a skewed representation of the effectiveness of the

system.

• Even when cropping the footage, the program often picked up vehicles from 5

or more lanes on the interstate. On campus, there will be at most 2 lanes in

view of any given system.

• Interstate traffic levels are closer to the level of traffic seen at peak campus

traffic hours, and while it serves as a sort of stress test for the system to use

higher-density traffic, this compounds with the previous issue.

3. Currently, the Jetson Nano is using a TensorFlow model that is not designed to

take advantage of the board’s architecture, which results in the GPU cores sitting

mostly idle during processing (around 3-4% usage on average). Once the

TensorFlow model is replaced with one that can properly utilize the board’s GPU,

the system will see significant improvements in performance, and at the very least

is expected to equal the processing speed of the laptop.

Conclusions
The number of vehicles detected by the system remained mostly consistent

across hardware. There were some small variations among the averaged values

of vehicles detected, but these are currently believed to be the result of

background processes irregularly interfering with CPU usage and thus the object

detection.

Use of monochrome footage and cropping footage to the relevant area results in

the fastest possible processing time currently. More testing is needed to ensure

that the single color channel does not have an impact on the object detection in a

campus environment, though it is not expected to make a significant difference in

the detection threshold for the distance the system is planned to be mounted at

from the parking area entrances/exits.

The Jetson Nano is currently at a disadvantage due to it being a GPU-focused

system using a CPU-focused TensorFlow model. Once the model is updated,

testing will be conducted again with the existing footage to evaluate what other

optimizations are needed.

Fig. 6. Development laptop specifications

Development laptop technical specifications

GPU Nvidia GeForce 940MX

CPU Intel i7-6500U

Memory 12GB

Plot 1
Color footage in development env.

Plot 2
Color footage in deployment env.

Plot 3
Monochrome footage in development env.

Plot 4
Monochrome footage in deployment env.

Fig. 7. Testing footage being processed

Fig. 8. Enlarged view of the overlay

